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ABSTRACT

A Midcourse guidance and navigation sjstem fér continuous low
thrust vehicles is developed in this research. The vehicle is requir-
ed to reach an allowable region near the desired geosynchronous orbit
from a near éarth orbit in minimum time. The angular position of the
vehicle in the orbit- is assumed to be unimportant during this midcourse
flight. The magnitude of the thrust acceleration is assumed to be
bounded. The effects of the uncertainties due to the random initial
state, the random thrusting error and the sengor error are included.

L set of orbit eleménts, known as fhe equinoctial‘elements, are
selected és the state variables. The uncertainties are modelled sta-
tistically by random vector and stochastic processes. The motion of
the vehicle and the measurements are described by nonlineér stochastic
differential and difference equations respectively.

A minimum time nominal trajectory is defined and the eguation of
motion and the measurement equation are linearized about thig nominal
trajeétory. An exponential éost criterion is constructed and a linear .
feedback guidance law is derived to control the thrusting direction

of the engine. Using this guidance law, the vehicle will fly in a
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trajectory neighboring the nominal trajectory. The extended Kalman
filter ig used for state estimation,

Finally a short mission using this system is simulated. The ré-
sults indicated that this system is very efficient for short missions.
For longer missions some more accurate ground based measurements and

nominal trajectory updates must be included.

Thesis Supervisor: John Jacgb Deyst, Jr., Sc.D.

Title: Associate Professer cof Aeronautics and Astronautics, M.I.T.
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CHAPTER T

INTRODUCTION

Recently, solar electric spacecraft propulsion systems of high
efficiency héve been developed. The advancements of this new tech-
nology have opened the road to a new era of space expleoration and
scientific research. Many space missions utilizing this propulsion
system have been planned by the National Aeronautics and Space
Administration for the second half of this decade. One of these
missions utilizes the solar electric propulsion stage (SEPS) for the
delivery and return of scientific payloads between near-earth‘orbits
and the geosynchroncus orbits. :

. The purpose of this research is to develop a practical and
efficient midcourse guidangce and navigation system for these continuous
lowlthrust vehicles. The vehicle is required to reach an allowable
region near the desired geosynchronous orbit in a minimum amcunt of
time. During this midcourse phase the angular position of the vehicle
in the orbit is assumed toc be unimportant., The magnitude of the thrust
acceleration of the SEPS is constrainted to be bounded. The uncer-
tainties due to the random initial state, the random thrusting error
and sensor errcr are included.

In Chapter II a set of state variables is selected and a
mathematical model is constructed. The motion of the vehicle is
described by a nonlinear stochastic differential equation and uncer-
tainties are modelled by stochastic processes. In Chapter IITI a

minimum time nominal trajectory is defined and the egquation of motion

15 @f s



and measurement equation are linearized about this nominal trajectory.
A meaningful cost criterion is constructed and a linear feedback con-
trol law is derived for the guidance system, In Chapter IV a naviga-
tion system is constructed and the complete closed-loop system is
discussed. The computer simulation results of this system are
presented and discussed in Chapter V. Finally conclusions are
presented in Chapter VI and the various equations related to the state

variables are presented in the Appendix.

16



CHAPTER II

THE MATHEMATICAL MODEL

The construction of a mathematical model is the most important
step in the design of a gudiancé and navigation system for continuous
low thrust wvehicles. In this chapter an appropriate set of state
variables is selected. Then the equations describing the motion of
the vehicle and the dynamics of the sensors are chosen. The uncertain-
ties due to the random initial state, the random thrusting error and
the sensor error are modelled statistically. Finélly the problem

considered in this research is stated mathematically.’

2.A State Variables

The state variables used in this research are the equinoectial
elements [4]. The most important advantage of these elements ié
that their equation of motion are free from singularities for zero
sccentricity and zero inclination. This is not the case for the
classical orbit elements [2].

The equinoctial elements can be defined in terms of the

classical orbit elements as follows

- - —
h 2 sin(w+d)
x - Kk =} e cos{u+l) (2.2.1)
RO M0+m+ﬂ
i, .
P tan(5451n §i
q tan(%)cos ¥
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where a, e, i, MO' w and §§ are the classical orbit elements
a = semimajor axis
e = eccentrigity
i = inclination
M0= mean ancmaly at the epoch
w = argument of perigee

¢ = longtitude of the ascending node

Alternatively, the equinoctial elements can be defined in terms
of the postition and velocity vectors. A coordinate system is defined
for this purpose as shown in Figure 2.1. The unit vector normal to

the orbital plane is given by
rxy

Y 5 rx v {2.a.2)

where r and vy are the position and velocity vectors respectively.
The components of this vector can be written in terms of the classical

orbit elements as

w =R 001"

sin @ sin i

-cos { sin i (2.A.3)
cos 1

where Rl is the rotation matrix

cos @ sin & O)(1 O 0 cos 2 sin Q O
Ry = sin Q@ cos ¥ 0|0 cos 4 sin if[l-gim  cos 2 0 (2.A.4)
0 0 1||0 sin- i cos 1 0 0 1

18
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Using (2.A.3) in (2.A.1} the egquinoctial elements p and g can be

written in terms of these components

)
X

o = 2 (2.A.5)
- W

17 T+, (2.h.6}

The unit vectors £ and ¢ defined in Figure 2.1 can now be written

in terms of p and g

f£=Rr (1 0 01T _
i 2. 2
1 -p"+g
1 2.A.7
= 2 z |2Pd ( )
1+p  + 4
_ZP
g=Rr [0 1 01T
2pg
1
= > > 1+ p° (2.A.8)
1 +p° + 4

The elements h and k are seen to be the components of the eccentricity

vector in the directions of these unit vectors and are given by

h=¢" g (2.A.9)
kK =el £ (2.2.10)
where e is the eccentricity vector
r (zxy xy
- T—-TE - {(2.2.11}

20



The element a is given by

2
2 bvl -1
TET_ T } ‘ (2.4.12)

If the components of the position and velocity vectors along the unit

vecotrs £ and g are denoted by : -

x, = 2" £ (2.A.13)
T
v, = r g {(2.8.14)
x = v E ©(2.A.15)
» T
n==xXg ‘ (2.2.16)
the eccentric longtitude F can be written as
) .
(1-k“8)%; - h k BY; . _
cos F =k + : (2.5.17)
a/i-ni-k? '
2 .
{l1-h B)Ylf— h k B X, o
sin F=h + (2.2.18)
a#lnhi—k
where
B = 1 (2.A.19)
1 + v1-n%-x?
The remaining element i, is given by Kepler's equation-
hg = F - k sin F + hcos F-‘/——];- t {2.4.20)
a

where t is the time measured from the epoch.

21



These equations are the transformations from classical orbit
elements or position and velocity vectors to equinogtial elements.
The inverse transformation from equincctial elements to position
and velocity is also included here for convenience.

To calculate the position and velocity vectors from equinoctial
elements, Kepler's equation (2.A.20) must be solved for the eccentri-

city longtitude F. Then the position and velocity vectors are given

by
r=%xi+rh g
v =% f+y, 9
% = a[l-h®g)cosF+ h k B sinF - kI (2.7.23),
¥ = al[1-k2B)sinF+ h k B cosF - h] (2.A.24)
%, =88 1 k 8 cosF - (1-h%8) sinF] (2.A.25)
§, ='e2 [(1-k%B)cosF - h k & sinF) {2.A.26)
where
r = afl-k cosF - h sinF] (2.A.27})

2.8 Equation of Motion

The only forces assumed to be acting on the vehicle are the
inverse square gravitational attraction of earth, the desired engine
thrust and the random thrusting error. The motion of the wvehicle is
described by a nonlinear stochastic differential equation [107.

%% = Gix,tlu + G(x,t)n (2.B.1)

22



where u is the desired engine thrust, n is the random thrusting error
and G(E,t} is a 6x3 matrix of the partial derivatives of the egui=-
noctial elements with respect to the velocity vector. The G(x,t)

matrix is given by

ox
Glx,t) = 5= . {2.B.2)
where
2a _ 2a® - (2.B.3)
v v ) .B.

-

2. ' X Y ¥
7oV Ta U - me ghe s Gyt - ne ghal”

kigy, - pX,) . :
e 2 Ll - (2.B.4)

ma2vi-nZ-k?

- X X l 3¥
3k __/1l-h -k 1 1 1 1 T
v ¥ T lgp * kB g2+ (g * kB gRhgl

hig¥, - pX%,) T

. {2.B.5)
ma? /'1__h'§‘_'k_2 , S e

3A : 2 .2 axX
0__ .2 .3 T 1-h“-k 1
i B R A + ) g Bl =

24

3L

+ —_— W {2.B.6}
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2, 2
=pte oy T (2.8.7)

S ¥y
omaZ/1-h%-k?

1<k

2,2
- ptta” X, ‘_.,_T (2.B.8)
2ma2¥1-h2-k

s
<3

2.C Measurement Eguation

Sensors are used to make measurements and update the vehicle's
estimate of it's state. These measurements which are corrupted by
random sensor errors are assumed to be made at discrete instants of
time. The types and the schedule of these measurements are assumed

to be fixed. The measurement equation is given by

E(ti) = hix, t;) + v (t;) {2.c.1)

¢ = ti<t2<... <tm= t

where E(ti} is the measurement vector, E(E'ti) is a vector function
of the state and gm(ti) is the vector of the random sensor error.
The form of the vector function E(E,ti}depeﬁds on the type of
measurement. For example, if a earth-diameter and a star-elevation

measurement are taken simultaneously, the vector function hixt,)

given by
2 Sin—l ('29')
o 2.c.2)
hix,t.,) = (2.C.
- =i -1, s5-&
cos {—=;=)—a

24



X star

star elevation measurement

vehicle

earth diameter
measurement

_Geometry of Earth-diametex
and Star-~elevation Measurements

Figure 2.2
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where s is the unit vector from the wvehicle to the star and d
is the diameter of earth, These measurements are pictured in

Figure 2.2.

2.D Statistical Modelling of the Uncertainties

There are three sources of uncertainties considered. They are
the random initial state, the random thrusting error and the sensor
error. The initial state x(0) is assumed to be a Gaussian random
vector. The mean and covariance of this vector is denoted by

E[x(0)] =

L%l

{2.D.2}
E{(x(0) - X(0)1x(0)-%(0)1T}= M(0) : (2.D.2)
If the covariance matrix of the initial state ig given in terms

of the position and velocity vectors, the necessary transformation
to the eguinoctial elements is given by

I Ix 3 T
M{0) = IF v _ M' (D) _
| () %(0)

where M'(0) is the covariance matrix of the initial position and

3

ot
1] 5%
a2

4l

velocity vectors. The matrix 3x/9r is included in the Appendix.

The random thrusting error is modelled by a zero mean white

Gaussian random process

Eln(t)]=0 {2.D.4)

E[I_'z_(t)r_xT(T)] =N §(t-T) {2.D.5)

The matrix N, representing the strength of the process noise, is
dependent on the desired engine thrust u. Both the n and u vectors are
pictured in Figure 2.3. The z' axis is defined in the direction

of the vector u. The x' and y' axes are defined in a plane normal

to u to form a triad. The quantities n,, n, and n, are assumed to

3
be zero mean independent random progesses

26



Process Noise Vector

Figure 2.3
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E[ni(t)] =0 i=1,2,3 (2.D.6)
Elng (£) 0 ()] = N 8(t=7)  i=1,2,3 (2.D.7)
Elng (¢) nj(t)] = 0 i (2.D.8)

These quantities are also assumed to be independent of the vector

u. Let R.

9 be the orthogonal transformation such that

T

e

= R 0 0 1] {2.D.%9)

2[

=

Then the vector n(t) and it's correlation can be written as

- T :
n = |u| RyIn; n, nyd" (2.D,10)

nl(t)nl(T) nl(t)nz(r) nl(t)na(r)

T 2 T
E t) = E(fu] R (t {1} Lit¥n,{t] n,(t)n,{t) | R
[n¢t)n" (1)) fuf 5 |Dy{ting n, {thn, (1 5 (E)ny (T )

n3(t)n1(1) n3(t)n2(T) n3(t)n3(T)

{2.D.11)

In view of (2.D.7) and (2.D.B), the correlation of n becomes

N, 0 0
ElnnT(0] = [ul® Ry [0 Ny 0 I3 T g(een) (2.D.12)
o 0 W,

o

Y
Furthermore since ny and n, are defined in a plane normal to u; it

is reasonable to assume that

(2.D.13)

28



Using (2.D.53), (2.D.12} and (2.D.13) the matrix N is given by

T T

N =N, [I-uu’] +N,uu (2.p.14)

1
The last source of uncertainties is the additive random sensor error
gm(ti) in {(2.C.1}. This random sensor error is modelled as a zero

mean white Gaussian random sequence
E[gm(ti)]-= 0 {2.D.15)

T =
E[Hm(ti)zm(tj)] = viaij (2.D.16)

Finally, the initial state x{0), the thrusting error n{t) and the

Sensor error (ti) are assumed to be independent of each other.

V
b 1]

?2.E Statement of the Problem

Given the nonlinear stochasti¢ system in (2.B.1) and (2.C.1}, the
problem is to determine the engine thrust u(t), t<t<t, subject to the

bounded magnitude constraint

luter | < w (t) 0<t<t (2.E.1)

£

such that the vehicle will reach an allowable orbit near the desired
geosynchronous orbit in a minimum amount of time. The function

um(t) in (2.E.1) represents the maximum amount of thrust acceleration
that the SEPS can deliver at time t. The desired geosynchronous orbit
is defined by the vector x. where (xf}4 ig free. The gquantity (xf)4
iz free because the angular position of the vehicle in the orbit is
assumed to be unimportant during the midcourse phase. The allowable

orbit near the desired geosynchronous orbit is defined by the target

set Xtarget in the state space
% arget = {xlty) [xi(tf)—(x£)i|<(6xf)i, i=1,i#4} (2.E.2)
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where 5§f represents the maximum allowable deviations. The
mathematical modelling of the problem is now completed. For stochastic
systems it cannot be assured that the constraints (2.E.l} and (2.E.2)

are satisfied. Probability measures are introduced in the next

chapter to overcome this difficulty.
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CHAPTER IIT

THE GUIDANCE SYSTEM

The problem formulated in the last chapter is a nonlinear sto-
chastic optium control problem. This class of problems in general has
no known solutions. In this chapter approximations are introduced so
that a practical solution of the problem can be found. First a min-
imum time nominal trajectory is defined. This nominal trajectory is
the solution to the problem if the uncertainties are absent. Then
the nonlinear stochastic system (2.B.1) and, (2.C.1) is linearized
ahout this nominal trajectory. Thé linearized equation of motion is
also discretized for convenience. An exponential cost criterion is
formulated for the discretized iineér stochastic system s¢0 that the
vehicle will reach the allowable.région near the desired geosynchronous
orbit with the magnitude of the control bounded. Finaliy the solution
to the linear-exponential-gaussian (LEG) terminal cost problem is pre-
sented and a linear feed-back control law is obtained for the guidance
system.

[
3.A Nominal Trajectory

Since the objective of the problem is to guide the vehicle =so
that it will reach the target set in a minimum amount of time, the
natural choice of the nominal trajectory is the minimum time traject-

ory. The state equation of this trajectory is given by

a

b4
—0 -
ot = %0y (3.A.1)
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where x, is the nominal state and Yy is the nominal control. The

initial and the final conditions are

% (0 =z (O (3.2.2)
X, (tg) = X¢ (3.5.3)

where (xf)4 is free. The nominal control censtraint is
lu (€1 ] <y te) (3.A.4)

The cost criterion to be minimized is

AT
o _f; at {(3.A.5)

The solution of this problem will £ix the nominal (xf}4-and ten

This problem may be solved by various existing technigues such as the
minimum principle of Pontryagin or differential dynamic programming.

Note that the nominal control go{t) will in general stay on the con-

straint boundary for this minimum time control problem.

3.B Linearizaticn

The eguation of motion and the mesasurement equation may now be
linearized about the nominal trajectory. Define &x and §u as the de-
viations of the state and the control respectively from the nominal

values

=
"
]
[%
1

(3.B.l{

dF &

{(3.B.2)
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A linear expansion of the equation of motion yields

d 3 ' -
(—1% = Glx,,tlu + [@ G{x,t)ul ix + I%—*P_ G(x,t)ul du

Xy Y %589

+ G (xg,/t) 0 {3.B.3)

Using (3.B.1) and (3.B.2) this eguation may be rewritten as

dx
B x589, E) X (3.B.4}

where

BA{X, .t} = [a G(x f)u]
=0'=0" xR T SR, 00y {3.B.5)

B(xy,t) = Glx,,t) (3.B.6)
The 6X6 matrix A(Eo,u .t) can be calculated explicitly in terms of
the equinoctial elements. This matrix is included in the’ Appendix.
The process noise n in (3.B.4) still depends on the desired control u.
Another approximation is made here so that n is approximated by a zero
mean white gaussian random process n,. The s;atistics of this process

LTy

is given by

Eln, (£)] = O ‘ (3.B.7)
Elng (E)ng(r)] = Ny §(t21) (3.B.8)

T T 3.B.9
ND = ﬂl[ JEPLE ] N, u4 4, (3.B.9)
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How the linearized equation of motion becomes

dx
3t = Blxgrug.tix + B(xg,t)u + Bix,,tin,
-A(xg/85et) X, (3.B.10)

Similarily, a linear expansion of the measurement equation (2.C.1)

yields

Using (3.B.1l) the linearized measurement equation- becomes

E(tl) = H(Z{_Ortl)i(tl) + y-m(tl) + E(?_‘:_Ortl) - H{Eﬂ'tl)io(tl}
{3.B.12)
where
3
Hixgety) = I E(E'ti”% (3.B.13)

The matrix H(x_@,ti} is a nonrandom matrix which depends on the type of
measurement taken. For the earth-diameter and star-elevation measure-

ments, this matrix is given by

T w
rzxfiirz—ﬁ:z B ar
T —_—
H{xgt:) = rng—(ng)gT . dr, oX
rz\/rz—(g r) rz\,hhsz-d‘Z %
Jzg L d % (3.B.14)

3 . ,
where Tx is a 3x6 matrix of the partial derivatives of the position
vector with regpect to the equinoctial elements. This matrix is in-

cluded in the Appendix.
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3.C Discretization

It is more convienient to solve the guidance problem if the state
is expressed as the sum of a stochastic process % and a nonrandom

vector function b. Define ¥ and b by the following eguations

das . .
ar = Alxgrg )X + Blxy,tlu + Bix,, tin, {(3.c.1)
db _ -
gt = R(EgrlUy )b - Alxg iy )%, (3.C.2)
Then the state x.is given by
¥x=%+b ' _ (3.¢.3)

If the boundary condition on b is defined at the nominal final time
te by

= X o ‘ (3.C.4)
then gjtf) represents the deviation at the target. The corresponding

initial condition of b is given by

‘ t
p{0) = ‘D-l{tf:ﬂ) +f £ e(T,0)A (X 0y, TIXy(T) dT {3.C.5)
0

where 6{t,0} is the state transition matrix satisfying the follow-
ing equations '

3d({t,t)

e = a(x,eu, 1) 2T, t) (3.€.6)

{t,t) = I (3.c.7}

Using ¢3.C.3) the initial condition for X is given by

%(0) = x(0) - p(0) {3.Cc.8)
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Therefore %(0) is alsc a Gaussian random vector with mean and covari-
ance given by
E{%(0)]
- ~ - T
EL[Z(0) - X(0) + b(0)] [%(0) - x(0) + B(0O)}I"} =M{0) (3.C.9)

%(0) - b{0)

The linearized measurement eguation (3.B.12) may also be written in

terms of X and b

E(ti) H(_{o,ti)ﬁ(ti) + V_m(ti) + E(Eoyti) + H(X_O.ti) ll_J_(ti) - Eol[ti)]

(3.Cc.11)

Now (3.C.1l) and (3.C.2) may bhe discretized. Let the time interval

[O,tf] be partitioned into n equal subintervals

0= tl<t2<...<tn+l = tf (3.C.12)

Then the discretized equations are

‘ t.
- _ ~ i+l
’i(tj+1) = @(tj+1,tj)§(tj) +ﬁ ¢(tj+l,t) B{xy,T)u(m)dr + Bgs
' 3
(3.C.13)
-1 te
bes) = 7 (g t)blty) +j; (e 1) A%y 0y DX ITIAT (53 0 1)
]
where E(Jj is a zero mean white Gaussian random sequence
E [oy51 =0 (3.C.15)
E |n..nt|] =w_. 6, (3.C.16)
—03—0k 03 “jk
ti+l i T
Noj = s @{tjﬂ_,'r] B{EO,T} NO(T] B (50,1']
o' (t T)d
j1r et (3.C.17)
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If the number n of subintervals is very. large, the control ul(t)

and the function um(t) can be approximated by step functions

t) = ult. £ <t<t, 3.c.18
un (8 = up ) Eigbst,, (3.C.19)
Then the discretized equation (3.C.13} becomes
_:g('tj_'_l) =_q>(tj+l,tj).:_5(tj) * w{tj+l,ﬁj)g(tj) * Doy ) (3.C.20)
where.
(t kg = O ae, o Blegemar L f (3.c.21)
Vltggatg) = )T BBy BRETIET T -C
3
The control constraint eguation (2.E.1}) also become
late) | < wpleg)  371,2,..m : (3.c.22)

3.D. Exponential Cost Criterion

In the absence of the uncértainties, the minimum time nominal
trajectory defined in section 3.A is the solution to the guidance
problem. When the vehicle is disturbed by random thrusting error,
the trajectory of its true motion will deviate from the nominal tra-
jectory. However, there is no reason to try to drive the vehicle
back to the nominal trajectory. Instead, the control ;equencéyg(tj)

is determined to take into account the uncertainties so that the

vehicle will reach the target set at the nominal time tf with the

:
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control sequence bounded. For the stochastic system (3.C.11) and
(3.C.20) it cannot be assured that these objectives can be met. .
Therefore probability measures are used to evaluate the effectiveness
of the control in acheiving these objectives and the probability that
the vehicle reaches the target and the controls stay within the bounds

is to be maximized.

Ty = By Ixlty) eX o, and futey)ls u, (t)) and...
and fult )] < w (£} (3.D.1)

This probability can be written as an expectation if the fellowing

indicator functiong are defined

T [P P Py o S DY TR
- i*vf flifs £i

{0 38 xgteg) = Gegy > (oxg)y
i=1,6; i # 4 {3.pi2)
1 if fufts)|za ()
- = 7J =m7J
Ium[g[tj)] = {

0 if Julty [>u (e

j=1,2...,n {3.D.3)

Then the probability J, in (3.D.1) is the expectation of the product

of these indicator functions

J. = E s._n
1= l%wl,ﬁ I
374 {3.D.4)
Application of dynamic programming to this problem will determine the
optimal control. The character of the control is such that maximum
thrust is utilized until the estimated state reaches the target state.

I! .
foi[xi(tf)] i=1,n Ium {E(tj)1}

In -effect the estimated state is driven to the target as quickly as
possible and the esgsential character of the minimum time solution is
also present in the maximum probability solution.
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Since the objective of the SEPS spacecraft ig to reach the
target set in minimum time, the control sequence E(tj} ghould

satisfy the eguality in (3.C.22). There is no known general solution

for the problem of determining the control sequence to maximize

the expectation J; in (3.D.4) subject to the linear stochastic
gystem (3.C.11) and (3.C.20). The product of these indjcator func-
tions will now be approximated by a exponential cost function.

J)%E Eexp }—% (e Lynley) + (ele)=x) T Qf(gttf)-zf)]"] {3.D.5)

5

17

i

The weighting matrices Lj and Qf must be chosen so that each term

of the exponential function in (3.D.5) approximate the corresponding

indicator function in -(3.D.4}. The normalized second moments oflthe
indicater functions Rﬁxf)i Ixi(tf)] are
o 'j[xf)i+ (8xg) ,
zTﬁTlcp‘i - con JFki(tf)"(Xf) 2% axtepy = _[i}fg)_ll.
i i .

i=121,6;: i#4 (3.D.6)

The normalized second momentks of the indicator functions Iu IE‘tj)]

m
are .
—_—t f fu {t )]2 dou (t.) d v (t.) d u_(t,)
2 e (e 1’ R L A
] .
2
_ Ium(tj)l
5
k = X,¥,2
j=1,2,...n (3.D.7)

where the integration is over a sphere with radius um(tj). Therefore

if the weighting matrices Lj and Q. are chosen as

Lj = ‘_'5_—'_2 I (3.D.8)
[um(tj)]

39 -



1 .
—, 0 0 0 0
[(Exg),1]

L 0
0 2 0 0
[(§xg),]
1
0 0 2 0 0 0
[8x,) ]
X
¢ 0 0 O wexpyg °
0 I
0 0 0 0 2
. Hﬁxf)sl
L 4 (3.p.9)

rhe normalized second moments of the indicators are the same as the
normalized second moments of the corresponding terms in the exponen-
tial cost function. The solution for the problem of the maximiza-
tion of the expectation of this exponential cost criteria is pre-

sented in the next section.

3.E Solution of the LEG Terminal Cost Problem

The linear discrete stochastic system cbtained in the last four

sections is given by

3= 1,2,...1 ] (3.E.1)
zlt;) = H(xg,ty) () + v () + hix, t;)

+ HGE £ [b(E) - x(E)]

i=1,2...m (3.E.2)
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The initial state g(tl) is a Gaussian random vector, the process

noise n, .
_03

sian random sequences all of which are statistically independent.

and the measurement noise Em(ti) are zeroc Mean white Gaus-

The measurement noise covariance and the control weighting matrices
are positive definite matrices. The process noise covariance and the
terminal state weighting matrices are positive semi~definite matrices.
The problem of the determination of the control sequence to maximize
the expectation of the exponential cost criteria in (3.D.5) is

called the linear-exponential-gaussian (LEG) terminal cost problemn.
The maximization of the expectation in (3.D.5) is the same as the

minimization of the following

3, =E |y ex [Y-f: wl(t, )L, ult,) +

o=

#tg) 0p Rltg)]

(3.E.3)

y = -1 ‘ S (3.E.4)

This problem is treated in a paper by Speyer, Deyst .and .Jacobson
[9]. The controls are restricted to be Borel functions of the past
measurement histery. The key in solwving fhis ﬁroblem is to utilize
the results of the Kalman-Buecy filter {5! and dynamic programming [G]f
For the terminal cost problem formulated here, the separation theorm
[11] holds. The optimal feedback contrel is a linear function oﬁ,the

current state estimate.
g{tj) = —A{tj) ®{tj) {(3.E.5)

where g(tj} denotes the current minimum variance estimate of gttj).
Under the conditions of this problem, the state estimate is the
mean of g(tj) conditioned on the past measurement history [E(tl),

z{t,)...z2(t) 1, tiitj. At a measurement, this conditional mean is
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updated by
:+’_.‘.‘,‘
§(tj ) o= ox{ey ) 4 Rits) yley) (3.E.6)

~

where g(tj+) and g(tj-) denote the estimate of %(tj) after and before
the meagurement respectively. ' The measurement residual 1(tj) is

given by

~

- Hixgsty) Elty) (3.E.7)

The Kalman gain K(tj) ig given by

1

- + T ~L,,
K(tj) = P(tj Y H (Eo.tj) 4 (tj) (3.E.8)

where P(tj) is covariance matrix of the estimation error conditioned
on the past measurement history. This conditional covariance matrix

is updated at a measurement by

o - . - T - T
P(tj ) = P(tj ) P(tj ) H lﬁo;tj) [Htgo,tj) P(tj ) H (Eo'tj)

1

+ V(tj)I H(x ,tj) P(tj ) (3.E.9)

where P(tj+) and P(tj—] denote P{tj) before and after the measurement
respectively. Between two measurements, g(tj) and P(tj) propagate
according to the following equations

Rltgg) = ol .85 (e + vt

j 3 rt5) nley) (3.E.10)

i+l

T
. = d(t, 4.t . . . 3.E.
P(tj+l) ( 341 tj) P(tj) o (t] t) + N ( 11)

+17 03

Thée initial state estimate and the error covariance matrix are given

by the apriori statistics of g{tl). While the separation theorm
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holds for this problem, the certainty equivalence principle [3] does
not hold. The feedback control gain A(tj) depends on the noise char-
acteristics. Thig dependence reflects the guality of the. state est-

imate. The feedback control gain matrix is given by
At = [, + 3T(e,, o) Qe vt e 17T e, )
3j j 4+1 775 j+1 j+1°73 i+l,t.

Q(tj+l) ¢(tjf;,tj) o {(3.E.12)

The matrix Q(fj) is given by a bhackward difference equation
Qlt, 1) = (e, t. ) lote) - oty Wy, o0 [V (Ll el _q)
il b R S R 3 3rr3-1 T3 il

-1 T )
Q(tj} w(tjrtj_l) + Lj—l] 11) ‘(tj’tj"l) Q{t])j

Bt k. : 3,E.13
| LIS (3.E.13)

where at a measurement

- _ + + -1,y _ T +
Q(tj ) = Q(tj } o+ YQ(tj ) K(tj) (Y (tj) YK (tj) Q(tj )

-1 T + - ' '
K(tj)] K (tj)-Q(tj ) - (3.E.14}

Noﬁe that at .a measurement, (3.E.12) becomes
At) = [L, + ¢ (e, .t (el ) ity 017t
3 ] j+17 7] j+1 i+1779
T

where Q(tj+l) is replaced by Q(tj+l).
The matrix Y(tj) is the covariance matrix of the measurenent

residual

_ T '
Y(tj) = H(io'tj’ P(tj) H {Eo'tj’ + v(tj) (3.E.18)
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Equation (3.E.14) shows the dependance of the control gain matrix on
the neoise characteristics explicitly. The terminal condition of

Q(tj) is given by

+

-1 -1
Qe 1) = Qp + ¥R [P 7(te) - ¥0: 1 7 Q¢ (3.E.17}

3.F The Guidance System

The linear feedback control law obtained in the solution of the
LEG terminal cost problem can be used for the midcourse guidance of
the SEPS Spacecraft. Since the overall objective of the SEPS Space-
craft is to reach the target set in minimum time, full thrust acceler-
ation will be used to propel-the vehicle. The LEG guidance law is

used to determine thrust direction only and full thrust magnitude is.

always utilized. Therefore the guidance law is given ay

elle

it '
y_(tj) = Em(tj) 1—"{El)‘|' (3.F.1)

3

|

where using (3.C.2) and (3.E.5) E'(tj) is given by

ut ey} = -A(tj) [i(tj) - lg(tj)] (3.7.2)

The on-board guidance system is only required to perform the vector
subtraction and matrix multiplication in (3.F.2). The feedback
contreol gain matrix A(tj) and the wvector E(tj) can he computed be-
fore the mission and stored in a computer on the SEPS for real time
mission usage. The navigation system to estimate the state g(tj)
is discussed in the next chapter. The guidance law (3.F.2) is

pictured in Figure 3.1.
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The Guidance System

Figure 3.1
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CHAPTER IV

" THE NAVIGATICON SYSTEM

In the last chﬁpter a linear féedback'controlflaw was obtained
for the guidance of £he SEPS Spacecraft. Using this control law, the
vehicle will fly in a trajectory neighboring the minimum time no@inq}
trajectory. Therefore the linear Kalman filter presented in section
3.E is not adeguate to estimate the vehicle's -state. In this chapte:r
the. extended Kalman filter [7] which is adequafe for neighbouring
trajectory estimation is discussgd. This_estimafbr, together with the
linear féedback control law cobtalned in the last chapter forms the
complete closed-loop midcou;sé guidance aﬂd-navigation system for

the SEPS Spacecraft.

4.A Extended Kalman Filter

- ' The extended Kalman filter has the same.stfucture as -the linear
Kalman filter. However, instead of lineérizing about the minimum
time nominal tfajectory aione, tﬁe extended Kalmanlfilter is linear-
ized about a number of nominal trajeétoriesr After each méasuremént;
‘a néw estimate of the state is obtained. This new estimate is uéed
to define a new nominal trajectory, Then the equation of motion and
~ the measurement eguation are linearized about this new nominal tra-
jectory.

It is more convenient to discuss the extended Kalman filter if

the continucus equation of motion (2.B.1l) is used. Now suppose the .
control u(t), O<t<t. is known. Let the estimate of the state and the

error govariance matrix of this estimate after the measurement at

@E\TG P&GE‘E
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time t; be %(t;) and P(tI) respectively. This estimate is used to

define a nominal trajectory x; (t) by

dx, (t)

—— = G (x;,t) ult) ty<t (4.A.1)
(t.) = 2 eh) (4.A.2)

SRS R o

The subscribt i is used to emphasize the dependence of the nominal
trajectory X, (t) on the state estimate §(£i). Define Ggi(ﬁl and
Bz () DY

Sx; (£) = x(£) - x;(8)  tyct (4.A.3)

§zi{t; q) = 2(t;4) = hix; b, 4) (4.a.4)

Linearization of (2.B.1) and (2.C.1) about this nominal trajectory

yields
déx, (t)
—aF = A(ii,g_,t) Gil(t) + B(Ei,t)ﬂ tlf-t (4.A.5)
Ggi(t Y + v (t {(4.A.6)

i+1) T OHOGE ) Sxp e )+ vty )

Mow the linear filtering theory can be applied to estimate Ggi(t}.
Before the measurement at time ti+1' the estimate éﬁi(t) ang the

error covariance matrix de (t) of this vector are given by the

Zi
following eguations
dﬁgi(t) ~
dP&Ei(t) .
—agr— = RAlxg;.ut) Pﬁii(t) + P‘Sfj_(t) AT{%.,u,t)
+ Blx,, t)N BU(x, ,t) £, <t<t
=i =i’ i—"7Ti+l {4.A.8)
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Using (4.A.3) this estimate is related to the estimate £(t) of the

state x(t) by
8%, (t) = &(£) - x, (8)  t <t | {4.1.9)
Also using {4.A.2)
| s%, (t%y = 0 ‘ {4.A.10)
and in view of (4.A.7)

bx; (8} = 0t <<ty (4.A.11)

Therefore before the measuremeht at time ti+l' the estimate of the

' state is given by the nominal trajectory x, (t)

SRt = x (8) o {4.2.12)
dxlt) - g(x,t) ule)
B SE<t, ‘ o O (4.A.13)

At the measurement at time t, ,, §x(t) and P {t) are updated by the
. : £ . .
. following equations

- ~ + - al — ) -
8, (1) = 85 (ky 5) + Ky (hy g) {8z (kg 00 ~ Bx; 0ty )

s (e} (4.2.14)

1

a4+, T . o
KilEi41) = Pog (854n) B (K550 V{8 4) (4.2.13)

v, - - T
Pox, Firn) = Pox, (Fird) 7 Poy (Fapn) T (i 8i0g) TR )

- T ._]_ ' -
Pog, (Fiad) B0 (2 8509) + VI8 )] 7 HOE o850 ) Py (Bi4y)

{4.A.18)
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Using (4.A.4), (4.A.9), (4.a.11} and (4.A.12), (4.A.14) becomes

~ + _a -
xitje) = 2t

i+1) + ﬂ (t.

),ti+l]}

{4.5.17)

) {Z(ti+l) hx{t

i+l = '="Ti+l

Using (4.A.3) the error covariance matrix Pﬁx.(t} of the estimate of
4 ‘ \ =i
6§i(t) and the error covariance matrix Pi(t) of the estimate of x(t)

are the same

dPi(t) . T, A ~ T, ~
—5g— = Alx,u,t) Py(t) + P {t) A" (x,u,t} + B(x,t)N B {x,t)
tie<ting (4.A.18)
+ _ — -
Poltyq) = Pyilegly) - Pyl ) H I"‘t1+1’'ti+1”H[3(ti+1"ti+1]
Pyt ) HUIR(E; o) by g1 + V(b 1)) DHIE(E D) ety ] Pl D)
(4.4.19)
Hence (4.A.17) can be rewritten as
X[tl+1) =’"75(;"’i+1) * Ki(ti+1) {E(ti+1) hIX(t1+1) ti+l]}
(4.A.20)

where now the Kalman gain Ki(ti+l) ig given by

‘ _ T~ - -1
Ri(tgaqd = Pyltypg) HODe(t 40 0t5,,]1 V T (E ) (4.2.20)
Now the new estimate x(t ) can be used to define a new nominal
trajectory similar to {(4.A.1) and (4.A.2) and the preceding method
can be repeated. The result is the extended Kalman filter given by

(4.A.13), (4.A.18) to (4.aA.21). This estimator is pictured in

Figure 4.1.
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4A.B The Closed-loop Guidance and Navigation System

The linear feedback control law in Chapter 3 and the extended
Ealman filter in the last section forms the complete closed-loop'
midcourse guidance and navigation system for the SEPS Spacecraft.

The on-board guidance system consists of the linear feedback control
law (B.F.i) and (3.F.2) where A(tj) and E(tj) are precomputable
quantities, Note that A(tj)-is computed by using the equations in
Chapter 3 where the quantities-P(tj) and K(tj) are not the same as
the quantitiés P; (t) and Ki(t) in the last section. The guantities
P(tj) and K(tj) are computed along the minimum time nominal traject-
ory while the quantities Pi(t) andrKitf) along a number of nominal
trajectories. This control law will guide the vehicle to fly aleng

a trajectory neighbouring to the minimum time nominal trajectory

and reach tﬁe target set at the nominal final time tf. The thrust
acceleration is always fully utilized to propel the vehicle and the
control is always on the constraint boundary for this minimum time
migsion. The or-board navigation system consists of the extended
Kalman filter (4.A.13) and (4.A.18} to (4.A.21) where all thé gquanti-
ties must be computed on-board the vehicle. The on-board computa-
tion of the;e quantities is the most important disadvantage of this
navigation system. The closed-loop system is pictured in Figure 4.2.
Although this guidance and navigation system is designed for the mig-
course phase, it can also be used for the terminal phase by including
the term for the angular position of the vehigle in the terminal
state weighting matrix. However, in this case the objective of
reaching the target set which now included the angular position of
the vehicle is more difficult to meet than the midcourse case, unless

the nominal mission time is very short.
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CHAPTER V

SIMULATION RESULTS AND DISCUSSION

A computer program has been prepared to simulate this midcourse
guidance and navigation system in real time. Although the system
was originally designed for missions from near earth orbits to geo-
synchronous orbits, £he simulation of a shorter mission should
equally well reveal the character and performance of the system.

The simulation results of this short mission, together with a dig-

cussion are presented in this chapter.

5.A B5imulation Results

The minimum time deterministic control problem which generates
the minimum time nominal trajectory defined in Section 3.A can only
be solved by numerical methods. For the simulation in this research
an approximate minimum time nominal trajectory is used. For the de-
tails of this approximate minimum time trajectory, the reader is
referred to Shepperd [7]. Flying along this nominal trajectory the
SEPS Spacecraft would reach the desired geosynchronous orbit from a
near earth orbit. If the near earth orbit has a radius of 4300 miles
and an inclination of 28 degrees, and if the desired geosynchronous
orbit has a radius of 2600 miles and an inclination of 0 degrees, the
nominal final time of this mission would be approximately 150 hours.
In the results presented here only the first 22.64 hours of the mis-
sion are simulated. ‘This nominal trajectory ig pictured in Figures,
5.1 to 5.6. The semi-major axis is increasing approximately linearly

with time. This shows that the averaged radius of the orbit is in-
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creasing. The equinoctial elements h and k vary sinusuidally with
an increasing amplitude. This increasing of amplitude showed that
the averaged eccentricity of the orbit is increasing. The equinoc-
tial element AO is increasing monotonically from 0 radians to
(27 + 5.073) radians. This variation showed how the angular posi-
tion of the SEPS Spacecraft in the orbit is changed by the engine
thrust acceleration. Finally the variaticns of the equinoctial
elements p and g showed that the inclination of the orbit is de-
creasing monotonically.

The values of the input variables used in this simulation are

summarized as follows. The statistics of the initial state are

" 0.1085 x 10'er|
0.0
20y =| ©-0
0.0
~0.249
0.0
N i : (5.A.1)
—0.196x10 er® 0.0 0.169x10 "exr 0.0 er -0.153x10 2%er
0.0 er 0.139x107° 0.0 0.143x10™° 0.0
0.169x10" %er 0.0 0.150x10™° 0.0 —0.414x10" 23
m{0)= -5 -5
0.0 er 0,143x10 0.0 0.154x10Q 0.0
-0.153x10"%%er 0.0 -0.414x107%3 g.0 0.6102x10"’
| 0.0 er -0.161x10"22 0.0 0.480x10°7 0.0
0.0 ] .
~0.161x10™ %%
0.0
0.480x10 7
0.0
(5.A.2)
0.103x10°%
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where er is earth-radii

er = 0.20925696 x 10° feet (5.4.3)

The vector E(O) is equivalent to a circular orbit with a radius of
4300 miles and an inclination of 28 degrees. The matrix m{0) is

equivalent to the following standard deviations

‘(Ur)l = 1 mile . (5.A.4)
(or)2 = 5 miles 4 {(5.A.5}
(ar)3 =1 milel .‘ ' 7 {5.A.6)
_(Gv)l = 5 feet/second ' {5.A.7)
(dv)2 = 15 feet/secona . (5.A.8)
(Gv)3 = lSlfeet/second (5.A.9}
where (qr)l, (cr}z; {cr)3,(UV)l, (ov)z, {UV}3 are the standard:

deviations of position and velocity in altitude, down range and
croes track directions respectively. These statistics are typical

of a spacecraft launch trajectory. The nominal final time is

tf = 22.64 hours (5.A.10)

The paraﬁeters defining the target set are

'0.1329x10-e11

0.2670x10™ 2

0.3221x10”2

0.5073x10%

-0.2325
3 (5.A.11)

| 0.2068x%107
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(6x.), = 0.775 x10™%er (5.A.12)
(6x.), = 0.858 x10™* (5.A.13)
(6x,) 5 = 0.971 x107* (5.2.14)
(6x.) 5 = 0.594 x10™* (5.A.15)
(6x,) ¢ = 0.106 x107T (5.2.16)

The values of the paraméters fo defined the size of the target
set. Since it is expected that the deviation between the true and
nominal state at the nominal final time will not bé less than the
expected estimation error, the values Ggf in (5.A.12) to (5.A.16)
are taken from the standard deviations of the corresponding diagon-
al elements of the estimation error covariance matrix P{tf). Hote
that the covariance matrix P(tf) is computed along the minimum time
nominal trajectory which is not the same as the covariance matrix
Pi(tf) computed using the eguations of the extended Kalman filter.
The thrust acceleration function is
€94

€
{l-—t)
s

um(t) =
{(5.2.17)

where 95 is the surface gravity acceleration, Is is the engine
specific impulse and & is the engine's initial thrust acceleration

in terms of the g,'s

I

e = 0.1 xlo™~ (5.A.18)

I= 0.4 x10? sec (5.A.19)

s

1

gO= 32.0 fEGt/SECODdz (5.A.20)

The parameters whi¢h represent the strength of the process noise are

{5.2.21)

=
ad
It
o
S
[ %]
™
[N
L]
I

{5.A.22)
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The value of the parometer N, in (5.A.21) is egual to the square

1
of 1 percent and the value of the parameter W, in (5.A.22) is equal
to 1/2 of the sguare of<l/60 degree. A set of measurements is
taken every half orbital period. Each set of measurements consist

of one earth-diameter and two star-elevation measurements. The-

parameter which represents the strength of the measurement noise 1is

0.84x10™7 0 0
v, = 0 0.84x1077 0
0 0 0.84x10" "

(5.R.23)

Note that (0.84x1077) is equal fo the square of 1/60 degrees

The results of this simulation are pictured in Figures 5.7 to
5.12 where the ‘difference between the true state and nominal state,
the différence between the true state and the estimated state. as

the results are

shown. At the nominal time tf,

0.9232 x 10 %er]

0.7592 x 10”2

~0.4034 x 107¢ o
Xtehy rie - X(tf)nominal = -1

-0.6B80 x 10

J-0.2113 x 1074

0.6884 x 1072 (5.2.24)

yaree —

0.1796 x 10 “er
0,1423 x 10~

0.6247 = 10

estimated = -1

x(te)
0.1330 x 10

true E“:f)

0.3895 = 10

0.1145 x 10 {5.A.25)
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The corresponding results in terms of the classical orbit elements

are

alty) e = Albg) ooy = 0.9232x10 %er (5.A.26)
elte) rue = ¢ nominal = 0.1824x107* (5.3.27)
ltg) e = AlEg) oy = 0.4009x10™2 (5.2.28)
Mot ve = Mo e nominal™ 0.8887x107t (5.A.29)
6lEg) tpue = 9(tg) nominay = 0-1974x107% (5.A.30)
00t rue = *te) nominal = 0.2959x10"3 (5.A.31)
alty)yye - 3tg) oopimated = 0.1796x10 Jer (5.A.32)
elt)irue - ¢ te)ggrinated = 0.1397x107° (5.2.33)
i(tf}true - i(tf}estimated #~0.7390x10"4 (5.8.34)
Mo (Ee) true ~ Mot ogtinated™ 0.3179x10 2 (5.A.35)
0t e = 8t oo inated = 0.1651x107 T (5.A.36)
Ut ue - 9t sorimated =—0.4904x10™% (5.3.37)

5.3 Discussion

The results showed that the SEPS Spacecraft was flying in a
neighboring trajectory and reached a point close to the desired
target set at the neminal final time tf. Due to the presence of the
uncertainties,the deviation between the true and nominal trajectory
is not small throughout the flight except at time t.. At time te,
the deviation between the true and the nominal state is small. A
comparison of (5.A.12) to (5.A.16) and (5.A.24) showed that the
closed-loop system is performing reasonably well for this short mis-

sion. The values of Ih(t{)true - h(tf)nominall,]k{tf)true-k(tf)nomi-

and |pl(t | are less than the values of

nalI £ true ~ P{te) hominal

(8xg) s (dxp) 5 and (Sxp) ¢ respectively. The value of la(tf)true

- alt

f)nominal! is approximately 1.19 times thg value of (8x.),.



The value of 1q(tf)true - q(tf]nominall is approxiamtely 64.94 times

the value of (axf)ﬁ. This large ratioc is due to the fact that {6xf)

6

is very small and the actual estimation error [q(tf)true ~ q(tf)esti-

matedf ig approxiamately 10.6 times the value of (6xf}6. However,
since the equinoctial elements p and q should have the same charae-

ter, a comparison of the values of lp(tf)true - p(tf)nominall and

Jq(tf)true - q(tf)nominal; in (5.A.24) showed that the closed-loop

system is still performing reasonably well. The value of *(Ao}true

(lﬂ)nominal[ is not small for this midcourse flight since this
equinoctial element is not included in the exponentialrcost criterion.

The deviation between the téue and estimated state is also pre~
gented in Figures 5.7 to 5.12. Between two measurements the estima-
tion errors are approximately constant. At a measurement the esti-
mation errors have discontinuitiee. These estimation errors tend
to increase glowly with time. This indicated that for a longer mis-
sion some more accurate mMeasurements such as ground based tracking
must be used to reducé these estimation errors. At these high ac-
curacy ground based measurements,the minimum time nominal trajectory,
the feedback control gain matrix A{tj} and the vector g(tj) could
also he updated. If these ground based updates are included in the
miscourse guidance and navigation of the SEPS Spacecraft, the closed-
loop system developed in this research should also perform well for
a longer mission.

The most important advantage of using the LEG guidance law in
the closed-loop system is that the weighting matrices Lj and 0y can
be chosen to achieve desired system performance. This fact is indi-
cated by the simulation results. In the linear-quadratic-gaussian
(LOG) problem [1], these weighting matrices usually must be obtained

by iterations to achieve the desired system performance.
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CHAPTER VI

CONCLUSIONS

A practical and efficient'ﬁidcourse guidancé and navigation sys
system for the SEPS Spacecraft has been developed in this research.
To reach the taréét set in minimum time the SEPS Spacecraft always
utilizes full thrust magnitude. The thrusting direction of the en-
gine is determined by the sclution of the LEG terminal cost problem.
The LEG approach provides a systematic way of determining wéighting
matrices for problems involving bounds and the control system design
did not reguire many iterations, as is typically the case when the
LOG approach is used. The solution of this problem, which is the
guidance law, determines the control as a linear function of the
current state estimate. Using this guidance law, the SEPS Space-
craft will £ly in trajectory neighbouring the minihum time traject-
ory. To take into account this fact, the extended Kalman filter is
used for the navigation of the SEPS Spacecraft.

The simulation results of a short mission have indicated that
this closed-loop system is very efficient in bring the SEPS Space-
craft to the target set. However, these results have also indicated
that the state estimation errors tend to increase slowly with time.
For a long mission this means that the navigation system would have
very poor state estimation and consequently the closed-loop system
would have very poor performance. Therefore it is concluded that if
this system is to be used effectively for a long mission, some more
accurate ground based measurements and nominal trajectory updates
must be included in the guidance and navigation of the SEPS Space-

craft.



The determination of an efficient measurement schedule, the fre~
quency of high accuracy ground based measurement and nominal tra-~
jectory updates can be carried for further study to improve the
effectiveness and performance of this closed-loop system. The pos-
sibilities of using thig closed-loop system for terminal guidance and

navigation of the SEPS can also be investigated.
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APPENDIX A

ax
THE MATRIX 7=
ax
The matrix 'ﬁ';::' is given by
ax T T . T AT T . T
X _ 32" 3h” 3k 0 3p° 3g _
I ..[3£ 3z %r ~9r er or ] (A__l)
T 2
_g_% - a3 r (A-2)
ot T .
7 T2 .7 3% 3 aY 3
sh™_ Y1-h%-k 1 a 1 a”
— ma r r
2171w A-
mazﬁl-hz-kzr
T T3 .3 3 3 Ay 3
3k~ _/1-h“-k 1 a 1 a’
3c - 7 LGp - kBm T X)) E 4+ (gpT - kbm =5 ¥,)g]
- ma Ir i
h(g¥,~pX,) .
PR T (a-4)
malv/1-n?-x?
g’ 1 3ut /1-h2 k2 2% ok
37 - W - T3 n - Ty Bl gt k) f
—_ ma r ma
3Y 3% (q'i'{ —p}:{ ) -
1 1 17P%
+ + k jgl - ———— W (a-5)
sh ok = 2 TR
ma“y1-h“-k
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T 2. 2
ar =¥ dw (n-6)
= may1-hik2
T 2, 2 .
_g%_ = _--E—-g———-——l+ + Xl y_ (A"?)
= malyl-hi-k2
. T
. 9%y _ (3\_?_) £ ‘ {a-8)
3h 3k .
. T
a_l = (ag) ES (A-9)
3% ‘3K
3y v . .
B GRe (A-10)
pt, 9y T
— = (-2} g (A-11)
av av

The partial deriviatives gﬁ : 3x are presented in Appendix C.
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APPENDIX B

ar
THE MAT#IX ﬁi
ar
The matrix % is given by
ar 3r 3r 3ar  ¥r 3¥r ar
5= L3 R &%, % 39! (8-1)
where

ax
=_1 -3 -
ja- 3 x-3t¥ {B-2)
3r Eixl BYl
- Lt 2 (8-3)
ox aX Y
= _ 1 1
k- Ltx g (B-4)
9T ¥
—_— = — (B.5
810 m
8r 2

- la(¥,f - X,9)-%X,¥W] (B.6)
ap 1+P2+q2 1 12 71— ‘
ar 2
-—=——§—-—[P(X_9"Y£)+Yw] (B.7)
9q 1+p +q2 1= 1 1=
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APPENDIX C

v .
THE MATRIX %

, 3V
The matrix = is given by
av 3V v 3V 3Y IV AV
3% - 53 3E 3K 3%, 3p 3q (c-1)

where
v
- v BE e (c-2)
r
sy 8k 8%,
R Etwm ¢ (c-3)
RS % Y,
kT Lt g (c-4)
v 3
—=-n%5r (c-5)
axo r
9V 2 . . .
— = ———— g (¥, f ~ X,q) - X, w ] (C-6)
| lrpliql 1 19 1 ¥
3y, 2 . . .
—_—= [plX.g - ¥,£) + ¥Y.w] {C-7)
aq 1+p2q§ 12 1 1—
. na’ [(h253 + gy(1-5y - 2né F(A-F) + h8 sin F + 2 cos® F]
) T S -6 Fy 7 cos 8 sin T co
ila a
- -7 [Fcos F (A-F} - sin F] (C-8)
E\J’G PA'G
\ 81 A E-B



Q7
e

1 ma? hkg3

= e (1-5) + E%E sin F (A-F) + cos F (h8—2 sin 1))
akl a
+ ['f sin F (A-F) + cos F] {Cc-9)
3Y 2 3
3ﬁl= ma [§§§#(§ -1y + E§§ cos F (A-F) ~ sin F (k8 - £ cos )]
a"l a
- '—f""' [f cos F {}\—F) - 8in F] : (C-lO)
5% 2 .2.3
EEL - E%-[(§:%_ ) (E - 1) - E§§ sin F(A-F) - XB cosF - a 8in®F]
a‘i’l a
+ _]'.'-_EE sin F(A-F) + cos F] . (C-ll)
A= AO + mt (C-12)
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APPENDIX D

THE MATRIX A(X;, 4y, t)

The matrix A(EO, LY t)is given by

A(xor uo: t) = [‘a_x

where
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